
Task Assignment with Unknown Duration

Mor Harchol-Balter

August 1999
CMU-cs-99-162

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We consider a distributed server system and ask which policy should be used
for assigning tasks to hosts. In our server, tasks are not preemptible. Also,
the task's service demand is not known a priori. We are particularly con-
cerned with the case where the workload is heavy-tailed, as is characteristic
of many empirically measured computer workloads. We analyze several natural
task assignment policies and propose a new one TAGS (Task Assignment based
on Guessing Size). The TAGS algorithm is counterintuitive in many respects,
including load unbalancing, non-work-conserving, and fairness. We find that
under heavy-tailed workloads, TAGS can outperform all task assignment policies
known to us by several orders of magnitude with respect to mean response time
and mean slowdown, provided the system load is not too high. We also intro-
duce a new practical performance metric for distributed servers called server
expansion. Under the server expansion metric, TAGS significantly outperforms
all other task assignment policies, regardless of system load.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

DTIC QUALITY TSSFECKED 4

19990929 018

Keywords: Task assignment, load sharing, load balancing, scheduling,
heavy-tailed workloads, high variance, distributed servers, fairness, contrary
behavior.

1 Introduction

In recent years, distributed servers have become commonplace because they al-
low for increased computing power while being cost-effective and easily scalable.

In a distributed server system, requests for service (tasks) arrive and must
be assigned to one of the host machines for processing. The rule for assigning
tasks to host machines is known as the task assignment policy. The choice of
the task assignment policy has a significant effect on the performance perceived
by users. Designing a distributed server system often comes down to choosing
the "best" task assignment policy for the given model and user requirements.
The question of which task assignment policy is "best" is an age-old question
which still remains open for many models.

In this paper we consider the particular model of a distributed server system
in which tasks are not preemptible - i.e. we are concerned with applications
where context switches are too costly. For example, one such application is batch
computing environments where the hosts themselves are parallel processors and
the tasks are parallel. Context switching between tasks involves reloading all the
processors and memory to return them to the state before the context switch.
Because context switching is so expensive in this environment, tasks are always
simply run to completion. Note, the fact that context switches are too expensive
does not preclude the possibility of killing a job and restarting it from scratch.

We assume furthermore that no a priori information is known about the
task at the time when the task arrives. In particular, the service demand of the
task is not known. We assume all hosts are identical and there is no cost (time
required) for assigning tasks to hosts. Figure 1 is one illustration of a distributed
server. In this illustration, arriving tasks are immediately dispatched by the
central dispatcher to one of the hosts and queue up at the host waiting for
service, where they are served in first-come-first-served (FCFS) order. Observe
however that our model in general does not preclude the possibility of having a
central queue at the dispatcher where tasks might wait before being dispatched.
It also does not preclude the possibility of an alternative scheduling discipline
at the hosts, so long as that scheduling discipline does not require preempting
tasks and does not rely on a priori knowledge about tasks.

Our main performance goal, in choosing a task assignment policy, is to min-
imize mean waiting time and more importantly mean slowdown. A task's slow-
down is its waiting time divided by its service demand. All means are per-task
averages. We consider mean slowdown to be more important than mean wait-
ing time because it is desirable that a task's delay be proportional to its size.
That is, in a system in which task sizes are highly variable, users are likely to
anticipate short delays for short tasks, and are likely to tolerate long delays for
longer tasks. Later in the paper we introduce a new performance metric, called

server expansion which is related to mean slowdown. A secondary performance
goal is fairness. We adopt the standard definition of fairness that says all tasks,
large or small, should experience the same expected slowdown. In particular,
large tasks shouldn't be penalized - slowed down by a greater factor than are
small tasks.1

Consider some task assignment policies commonly proposed for distributed
server systems: In the Random task assignment policy, an incoming task is sent
to Host i with probability 1/h, where h is the number of hosts. This policy
equalizes the expected number of tasks at each host. In Round-Robin task as-
signment, tasks are assigned to hosts in a cyclical fashion with the ith task
being assigned to Host i mod h. This policy also equalizes the expected number
of tasks at each host, and has slightly less variability in interarrival times than
does Random. In Shortest-Queue task assignment, an incoming task is imme-
diately dispatched to the host with the fewest number of tasks. This policy has
the benefit of trying to equalize the instantaneous number of tasks at each host,
rather than just the expected number of tasks. All the above policies have the
property that the tasks arriving at each host are serviced in FCFS order.

The literature tells us that Shortest-Queue is in fact the best task assign-
ment policy in a model where the following conditions are met: (1) there is no
a priori knowledge about tasks, (2) tasks are not preemptible, (3) each host
services tasks in a FCFS order, (4) incoming tasks are immediately dispatched
to a host, and (5) the task size distribution is Exponential (see Section 2).

If one removes restriction (4), it is possible to do even better. What we'd
really like to do is send a task to the host which has the least total outstanding
work (work is the sum of the task sizes at the host) because that host would
afford the task the smallest waiting time. However, we don't know a priori
which host currently has the least work, since we don't know task sizes. It
turns out this is actually easy to get around: we simply hold all tasks at the
dispatcher in a FCFS queue, and only when a host is free does it request the
next task. It is easy to prove that this holding method is exactly equivalent to
immediately dispatching arriving tasks to the host with least outstanding work
(see [6] for a proof and Figure 2 for an illustration). We will refer to this policy
as Least-Work-Remaining since it has the effect of sending each task to the host
with the currently least remaining work. Observe that Least-Work-Remaining
comes closest to obtaining instantaneous load balance.

It may seem that Least-Work-Remaining is the best possible task assign-
ment policy. Previous literature shows that Least-Work-Remaining outper-
forms all of the above previously-discussed policies under very general conditions
(see Section 2). Previous literature also suggests that Least-Work-Remaining

1 For example, Processor-Sharing (which requires infinitely-many preemptions) is ultimately
fair in that every task experiences the same expected slowdown.

FCFS

OUTSIDE
ARRIVALS

Figure 1: Illustration of a distributed server.

FCFS

OUTSIDE
ARRIVALS

E©-^

ffl©-^
FCFS

(a) (b)

Figure 2: Two equivalent ways of implementing the Least-Work-Remaining
task assignment policy, (a) Shows incoming tasks immediately being dispatched
to the host with the least remaining work, but this requires knowing a priori
the sizes of the tasks at the hosts, (b) Shows incoming tasks pooled at a FCFS
queue at the dispatcher. There are no queues at the individual hosts. Only when
a host is free does it request the next task. This implementation does not require
a priori knowledge of the task sizes, yet achieves the same effect as (a).

may be the optimal (best possible) task assignment policy in the case where the
task size distribution is Exponential (see Section 2 for a detailed statement of
the previous literature).

But what if task size distribution is not Exponential? We are motivated in
this respect by the increasing evidence for high variability in task size distri-
butions, as seen in many measurements of computer workloads. In particular,
measurements of many computer workloads have been shown to fit heavy-tailed
distributions with very high variance, as described in Section 3 - much higher
variance than that of an Exponential distribution. Is there a better task as-
signment policy than Least-Work-Remaining when the task size variability is
characteristic of empirical workloads? In evaluating various task assignment
policies, we will be interested in understanding the influence of task size vari-
ability on the decision of which task assignment policy is best. For analytical
tractability, we will assume that the arrival process is Poisson - our simulations
indicate that the variability in the arrival process is much less critical to choosing
a task assignment policy than is the variability in the task size distribution.

In this paper we propose a new algorithm called TAGS - Task Assignment
by Guessing Size which is specifically designed for high variability workloads.
We will prove analytically that when task sizes show the degree of variability
characteristic of empirical (measured) workloads, the TAGS algorithm can out-
perform all the above mentioned algorithms by several orders of magnitude. In
fact, we will show that the more heavy-tailed the task size distribution, the
greater the improvement of TAGS over the other task assignment algorithms.

The above improvements are contingent on the system load not being too
high. 2 In the case where the system load is high, we show that all the task
assignment policies have such poor performance that they become impractical,
and TAGS is especially negatively affected. In practice, if the system load is
too high to achieve reasonable performance, one adds new hosts to the server
(without increasing the outside arrival rate), thus dropping the system load,
until the system behaves as desired. We refer to the "number of new hosts which .
must be added" above as the server expansion requirement. We will show that
TAGS outperforms all the previously-mentioned task assignment policies with
respect to the server expansion metric (i.e., given any initial load, TAGS requires
far fewer additional hosts to perform well).

We will describe three flavors of TAGS. The first, called TAGS-opt-meanslowdown
is designed to minimize mean slowdown. The second, called TAGS-opt-meanwaitingtime

2For a distributed server, system load is defined as follows:

System load = Outside arrival rate • Mean task size / Number of hosts

For example, a system with 2 hosts and system load .5 has same outside arrival rate as a
system with 4 hosts and system load .25. Observe that a 4 host system with system load p
has twice the outside arrival rate of a 2 host system with system load p.

is designed to minimize mean waiting time. Although very effective, these
algorithms are not fair in their treatment of tasks. The third flavor, called
TAGS-opt-fairness, is designed to optimize fairness. While managing to be
fair, TAGS-opt-fairness still achieves mean slowdown and mean waiting time
close to the other flavors of TAGS.

Section 2 elaborates in more detail on previous work in this area. Sec-
tion 3 provides the necessary background on measured task size distributions
and heavy-tails. Section 4 describes the TAGS algorithm and all its flavors. Sec-
tion 5 shows results of analysis for the case of 2 hosts and Section 6 shows
results of analysis for the multiple-host case. Section 7 explores the effect of
less-variable job size distributions. Lastly, we conclude in Section 8. Details on
the analysis of TAGS are described in the Appendix.

2 Previous Work on Task Assignment

2.1 Task assignment with no preemption

The problem of task assignment in a model like ours (no preemption and no a
priori knowledge) has been extensively studied, but many basic questions remain
open.

One subproblem which has been solved is that of task assignment under the
restriction that all tasks be immediately dispatched to a host upon arrival and
each host services its tasks in FCFS order. Under this restricted model, it has
been shown that when the task size distribution is exponential and the arrival
process is Poisson, then the Shortest-Queue task assignment policy is optimal,
Winston [19]. In this result, optimality is defined as maximizing the discounted
number of tasks which complete by some fixed time t. Ephremides, Varaiya,
and Walrand [5] showed that the Shortest-Queue task assignment policy also
minimizes the expected total time for the completion of all tasks arriving by
some fixed time t, under an exponential task size distribution and arbitrary
arrival process. The actual performance of the Shortest-Queue policy is not
known exactly, but the mean response time is approximated by Nelson and
Phillips [11], [12]. Whitt has shown that as the variability of the task size
distribution grows, the Shortest-Queue policy is no longer optimal [18]. Whitt
does not suggest which policy is optimal.

The scenario has also been considered, under the same restricted model
described in the above paragraph, but where the ages (time in service) of the
tasks currently serving are known, so that it is possible to compute an arriving
task's expected delay at each queue. In this scenario, Weber [17] considers the
Shortest-Expected-Delay rule which sends each task to the host with the

least expected work (note the similarity to the Least-Work-Remaining policy).
Weber shows that this rule is optimal for task size distributions with increasing
failure rate (including Exponential). Whitt [18] shows that there exist task size
distributions for which this rule is not optimal.

Wolff, [20] has proven that Least-Work-Remaining is the best possible task
assignment policy out of all policies which do not make use of task size. This
result holds for any distribution of task sizes and for any arrival process.

Another model which has been considered is the case of no preemption
but where the size of each task is known at the time of arrival of the task.
Within this model, the SITA-E algorithm (see [7]) has been shown to outperform
the Random, Round-Robin, Shortest-Queue, and Least-Work-Remaining algo-
rithms by several orders of magnitude when the task size distribution is heavy-
tailed. In contrast to SITA-E, the TAGS algorithm does not require knowledge
of task size. Nevertheless, for not-too-high system loads (< .5), TAGS improves
upon the performance of SITA-E by several orders of magnitude for heavy-tailed
workloads.

2.2 When preemption is allowed and other generalizations

Throughout this paper we maintain the assumption that tasks are not pre-
emptible. That is, once a task starts running, it can not be stopped and re-
continued where it left off. By contrast there exists considerable work on the
very different problem where tasks are preemptible (see [8] for many citations).

Other generalizations of the task assignment problem include the scenario
where the hosts are heterogeneous or there are multiple resources under con-
tention.

The idea of purposely unbalancing load has been suggested previously in [3]
and in [1], under different contexts from our paper. In both these papers, it
is assumed that task sizes are known a priori. In [3] a distributed system with
preemptible tasks is considered. It is shown that in the preemptible model,
mean waiting time is minimized by balancing load, however mean slowdown is
minimized by unbalancing load. In [1], real-time scheduling is considered where
tasks have firm deadlines. In this context, the authors propose "load profiling,"
which "distributes load in such a way that the probability of satisfying the
utilization requirements of incoming tasks is maximized."

3 Heavy Tails

As described in Section 1, we are concerned with how the distribution of task
sizes affects the decision of which task assignment policy to use.

Many application environments show a mixture of task sizes spanning many
orders of magnitude. In such environments there are typically many small tasks,
and fewer large tasks. Much previous work has used the exponential distribution
to capture this variability, as described in Section 2. However, recent measure-
ments indicate that for many applications the exponential distribution is a poor
model and that a heavy-tailed distribution is more accurate. In general a heavy-
tailed distribution is one for which

Pi{X>x}~x-a,

where 0 < a < 2. The simplest heavy-tailed distribution is the Pareto distribu-
tion, with probability mass function

f(x) = akax-a-1, a,k>% x>k,

and cumulative distribution function

F{x) - Pr{X <x} = l- (k/x)a.

A set of task sizes following a heavy-tailed distribution has the following prop-
erties:

1. Decreasing failure rate: In particular, the longer a task has run, the longer
it is expected to continue running.

2. Infinite variance (and if a < 1, infinite mean).

3. The property that a very small fraction (< 1%) of the very largest tasks
make up a large fraction (half) of the load. We will refer to this important
property throughout the paper as the heavy-tailed property.

The lower the parameter a, the more variable the distribution, and the more
pronounced is the heavy-tailed property, i.e. the smaller the fraction of large
tasks that comprise half the load.

As a concrete example, Figure 3 depicts graphically on a log-log plot the
measured distribution of CPU requirements of over a million UNIX processes,
taken from paper [8]. This distribution closely fits the curve

PrjProcess Lifetime > T} = 1/T.

In [8] it is shown that this distribution is present in a variety of computing en-
vironments, including instructional, research, and administrative environments.

In fact, heavy-tailed distributions appear to fit many recent measurements
of computing systems. These include, for example:

• Unix process CPU requirements measured at Bellcore: 1 < a < 1.25 [10].

• Unix process CPU requirements, measured at UC Berkeley: a « 1 [8].

• Sizes of files transferred through the Web: 1.1 < a < 1.3 [2, 4].

• Sizes of files stored in Unix filesystems: [9].

• I/O times: [14].

• Sizes of FTP transfers in the Internet: .9 < a < 1.1 [13].

In most of these cases where estimates of a were made, a tends to be close to
1, which represents very high variability in task service requirements.

In practice, there is some upper bound on the maximum size of a task,
because files only have finite lengths. Throughout this paper, we therefore model
task sizes as being generated i.i.d. from a distribution that follows a power law,
but has an upper bound - a very high one. We refer to this distribution as a
Bounded Pareto. It is characterized by three parameters: a, the exponent of
the power law; k, the smallest possible observation; and p, the largest possible
observation. The probability mass function for the Bounded Pareto B(k,p, a)
is defined as:

f{x)=i^Wivrx~a~l k<*<p- a)

In this paper, we will vary the a-parameter over the range 0 to 2 in order
to observe the effect of changing variability of the distribution. To focus on
the effect of changing variance, we keep the distributional mean fixed (at 3000)
and the maximum value fixed (at p = 1010), which correspond to typical values
taken from [2]. In order to'keep the mean constant, we adjust k slightly as a
changes (0 < k < 1500).

Note that the Bounded Pareto distribution has all its moments finite. Thus,
it is not a heavy-tailed distribution in the sense we have defined above. How-
ever, this distribution will still show very high variability if k < p. For exam-
ple, Figure 4 (right) shows the second moment E {X2} of this distribution as a.
function of a for p = 1010, where k is chosen to keep E {X} constant at 3000,
(0 < k < 1500). The figure shows that the second moment explodes exponen-
tially as a declines. Furthermore, the Bounded Pareto distribution also still
exhibits the heavy-tailed property and (to some extent) the decreasing failure
rate property of the unbounded Pareto distribution. We mention these prop-
erties because they are important in determining our choice of the best task
assignment policy.

Distribution of process lifetimes (log plot)
(fraction of processes with duration > T)

16 32 64

Duration (T sees.)

Figure 3: Measured distribution of UNIX process CPU lifetimes, taken from
[HD97]. Data indicates fraction of jobs whose CPU service demands exceed T
seconds, as a function ofT.

f(x)

Second Moment of Bounded Päreto Distribution

power Law
w/exponent
-oc-1

Figure 4: Parameters of the Bounded Pareto Distribution (left); Second Moment
ofB(k, 1010, a) as a function of a, when E {X} = 3000 (right).

OUTSIDE
ARRIVALS

Figure 5: Illustration of the flow of tasks in the TAGS algorithm.

4 The TAGS algorithm

This section describes the TAGS algorithm.

Let h be the number of hosts in the distributed server. Think of the hosts
as being numbered: 1,2,..., h. The ith host has a number s, associated with
it, where Si < s2 < ... < «/,.

TAGS works as shown in Figure 5: All incoming tasks are immediately dis-
patched to Host 1. There they are serviced in FCFS order. If they complete
before using up sy amount of CPU, they simply leave the system. However, if
a task has used si amount of CPU at Host 1 and still hasn't completed, then
it is killed (remember tasks cannot be preempted because that is too expensive
in our model). The task is then put at the end of the queue at Host 2, where
it is restarted from scratch3. Each host services the tasks in its queue in FCFS
order. If a task at host i uses up s,- amount of CPU and still hasn't completed
it is killed and put at the end of the queue for Host i+1. In this way, the TAGS
algorithm "guesses the size" of each task, hence the name.

The TAGS algorithm may sound counterintuitive for a few reasons: First of
all, there's a sense that the higher-numbered hosts will be underutilized and the

3Note, although the task is restarted, it is still the same task, of course. We are therefore
careful in our analysis not to assign it a new service requirement.

10

first host overcrowded since all incoming tasks are sent to Host 1. An even more
vital concern is that the TAGS algorithm wastes a large amount of resources by
killing tasks and then restarting them from scratch.4 There's also the sense that
the big tasks are especially penalized since they're the ones being restarted.

TAGS comes in 3 flavors; these only differ in how the s,'s are chosen. In
TAGS-opt-meanslowdown, the s,-'s are chosen so as to optimize mean slowdown.
In TAGS-opt-meanwaitingtime, the s,-'s are chosen so as to optimize mean wait-
ing time. As we'll see, TAGS-opt-meanslowdown and TAGS-opt-meanwaitingtime
are not necessarily fair. In TAGS-opt-f airness the s,'s are chosen so as to opti-
mize fairness. Specifically, the tasks whose final destination is Host i experience
the same expected slowdown under TAGS-opt-f airness as do the tasks whose
final destination is Host j, for all i and j.

TAGS may seem reminiscent of multi-level feedback queueing, but they are not
related. In multi-level feedback queueing there is only a single host with many
virtual queues. The host is time-shared and tasks are preemptible. When a task
uses some amount of service time it is transferred (not killed and restarted) to
a lower priority queue. Also, in multi-level feedback queueing, the tasks in that
lower priority queue are only allowed to run when there are no tasks in any of
the higher priority queues.

5 Analysis and Results and For the Case of 2
Hosts

This section contains the results of our analysis of the TAGS task assignment
policy and other task assignment policies. In order to clearly explain the effect
of the TAGS algorithm, we limit the discussion in this section to the case of 2
hosts. In this case we refer to the tasks whose final destination is Host 1 as
the small tasks and the tasks whose final destination is Host 2 as the big tasks.
Until Section 5.3, we will always assume the system load is 0.5 and there are 2
hosts. In Section 5.3, we will consider other system loads, but still stick to the
case of 2 hosts. Finally, in Section 6 we will consider distributed servers with
multiple hosts.

We evaluate several task assignment policies, all as a function of a, where a
is the variance-parameter for the Bounded Pareto task size distribution, and a
ranges between 0 and 2. Recall from Section 3 that the lower a is, the higher the
variance in the task size distribution. Recall also that empirical measurements
of task size distributions often show a « 1.

4My dad, Micha Harchol, would add that there's also the psychological concern of what
the angry user might do when he's told his task's been killed to help the general good.

11

We will evaluate the Random, Least-Work-Remaining, and TAGS policies.
The Round-Robin policy (see Section 1) will not be evaluated directly be-
cause we showed in a previous paper [7] that Random and Round-Robin have
almost identical performance. As we'll explain in Section 5.1, our analysis of
Least-Work-Remaining is only an approximation, however we have confidence
in this approximation because our extensive simulation in paper [7] showed it
to be quite accurate in this setting. As we'll discuss in Section 5.1, our analysis
of TAGS is also an approximation, though to a lesser degree.

Figure 6(a) below shows mean slowdown under TAGS-opt-slowdown as com-
pared with the other task assignment policies. The y-axis is shown on a log
scale. Observe that for very high a, the performance of all the task assign-
ment policies is comparable and very good, however as a decreases, the perfor-
mance of all the policies degrades. The Least-Work-Remaining policy consis-
tently outperforms the Random policy by about an order of magnitude, how-
ever the TAGS-opt-slowdown policy offers several orders of magnitude fur-
ther improvement: At a = 1.5, the TAGS-opt-slowdown policy outperforms
the Least-Work-Remaining policy by 2 orders of magnitude; at awl, the
TAGS-opt-slowdown policy outperforms the Least-Work-Remaining policy by
over 4 orders of magnitude; at a = A the the TAGS-opt-slowdown policy out-
performs the Least-Work-Remaining policy by over 9 orders of magnitude, and
this increases to 15 orders of magnitude for a = .2!

Figures 6(b) and (c) show mean slowdown of TAGS-opt-waitingtime and
TAGS-opt-f airness, respectively, as compared with the other task assignment
policies. Since TAGS-opt-waitingtime is optimized for mean waiting time,
rather than mean slowdown, it is understandable that its performance im-
provements with respect to mean slowdown are not as dramatic as those of
TAGS-opt-slowdown. However, what's interesting is that the performance of
TAGS-opt-f airness is very close to that of TAGS-opt-slowdown and yet TAGS-opt-f airness
has the additional benefit of fairness.

Figure 7 is identical to Figure 6 except that in this case the performance
metric is mean waiting time, rather than mean slowdown. Again the TAGS al-
gorithm, especially TAGS-opt-waitingtime, shows several orders of magnitude
improvement over the other task assignment policies.

Why does the TAGS algorithm work so well? Intuitively, it seems that
Least-Work-Remaining should be the best performer, since Least-Work-Remaining
sends each task to where it will individually experience the lowest waiting time.
The reason why TAGS works so well is 2-fold: The first part is variance reduction
(Section 5.1) and the second part is load unbalancing (Section 5.2).

12

(a)
Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, load .5

] - Random

1085
\ ... Least-Work-Left Approx.

i — TAGS-opt-slowdown

10* ■ \ -

io,s

\
(' ik

io10 - \ \
^ ^>§^

105

in0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
alpha

(b)
Results: MEAN SLOWDOWN using TAGS-opt-waitingtime: 2 hosts, load .5

Random

Least-Work-Left Approx.

- TAGS-opt-waftingtime

Results: MEAN SLOWDOWN using TAGS-opt-falrness: 2 hosts, load .5

! - Random

io35
\ ...Least-Work-Left Approx.

\ — TAGS-opt-fairness

-

10M
■

io15 -

io10 -

105 -

0.2 0.4 0.6 0.8 1 1.2 1.4
alpha

Figure 6: Mean slowdown for districted server with 2 hosts and system
load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c)
TAGS-opt-fairness as compared with the Least-Work-Remaining and Random
task assignment policies.

(a)
Results: MEAN WAITING TIME using TAGS-opt-slowdown: 2 hosts, load .5

-1 r—

- Random

... Least-Work-Lefl Approx.

— TAGS-opt-fairness

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
alpha

(b)
10'°

Results: MEAN WAITING TIME using TAGS-opt-waitlngtime:'2 hosts, load .5

- Random

irf*
e—^-^. •" Least-Work-Left Approx.

' O. >a —TAGS-opt-fairness
o. \.

10"

o. e^.

1ÜT

0 \i

.
10°' '-a

"e-e-e—-. "V\
1

10s

"

10*

vf

-&■

111111,1

0-2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.E
alpha

(c)
12 Results: MEAN WAITING TIME using TAGS-opt-fairness: 2 hosts, toad .5

- Random

... Least-Work-Left Approx.

— TAGS-opt-fairness

0.2 0.4 0.6 1 1.2 1.4 1.6 1.8
alpha

Figure 7: Mean waiting time for distributed server with 2 hosts and system
load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c)
TAGS-opt-fairness as compared with the Least-Work-Remaining and Random
task assignment policies.

5.1 Variance Reduction

Variance reduction refers to reducing the variance of task sizes that share the
same queue. Intuitively, variance reduction is important for improving perfor-
mance because it reduces the chance of a small task getting stuck behind a big
task in the same queue. This is stated more formally in Theorem 1 below, which
is derived from the Pollaczek-Kinchin formula.

Theorem 1 Given an M/G/l FCFS queue, where the arrival process has rate
X, X denotes the service time distribution, and p denotes the utilization (p —
XE{X}). Let W be a task's waiting time in queue, S be its slowdown, and Q
be the queue length on its arrival. Then,

\ji rv-2 1
E{W} = i [Pollaczek-Kinchin formula]

E{S] = E{W/X} = E{W}-E{X~1}

E{Q} = XE{W}

Proof: The slowdown formulas follow from the fact that W and X are indepen-
dent for a FCFS queue, and the queue size follows from Little's formula. ■

Observe that every metric for the simple FCFS queue is dependent on
E l^2}, the second moment of the service time. Recall that if the workload
is heavy-tailed, the second moment of the service time explodes, as shown in
Figure 4.

We now discuss the effect of high variability in task sizes on a distributed
server system under the various task assignment policies.

Random Task Assignment The Random policy simply performs Bernoulli
splitting on the input stream, with the result that each host becomes an inde-
pendent M/B(k,p,a)/l queue. The load at the «th host, pi, is equal to the
system load, p. The arrival rate at the ?th host is l//i-fraction of the total
outside arrival rate. Theorem 1 applies directly, and all performance metrics
are proportional to the second moment of B(k,p, a). Performance is generally
poor because the second moment of the B(k,p, a) is high.

Round Robin The Round Robin policy splits the incoming stream so each
host sees an Eh/B(k,p,a)/1 queue, with utilization pi = p. This system has
performance close to the Random policy since it still sees high variability in
service times, which dominates performance.

15

Least-Work-Remaining The Least-Work-Remaining policy is equivalent
to an M/G/h queue, for which there exist known approximations, [16],[21]:

£ fy21
E {QM/G/h} = E {QM/M/h} ■ 2,

where X denotes the service time distribution, and Q denotes queue length.
What's important to observe here is that the mean queue length, and therefore
the mean waiting time and mean slowdown, are all proportional to the second
moment of the service time distribution, as was the case for the Random and
Round-Robin task assignment policies. In fact, the performance metrics are all

proportional to the squared coefficient of variation (C2 = E] |) of the service
time distribution.

TAGS The TAGS policy is the only one which reduces the variance of task sizes
at the individual hosts. Let p{ be the fraction of tasks whose final destination
is Host i. Consider the tasks which queue at Host i: First there are those
tasks which are destined for Host i. Their task size distribution is B(si_1,si, a)
because the original task size distribution is a Bounded Pareto. Then there are
the tasks which are destined for hosts numbered greater than i. These tasks are
all capped at size st. Thus the second moment of the task size distribution at
Host i is lower than the second moment of the original B(k,p, a) distribution
(for all hosts except the highest-numbered host, it turns out). The full analysis
of the TAGS policy is presented in the Appendix and is relatively straightforward
except for one point which we have to fudge and which we explain now: For
analytic convenience, we need to be able to assume that the tasks arriving at
each host form a Poisson Process. This is of course true for Host 1. However
the arrivals at Host i are those departures from Host i — 1 which exceed size
Si-i. They form a less bursty process than a Poisson Process since they are
spaced apart by at least s,-_i. Throughout our analysis of TAGS, we make the
assumption that the arrival process into Host i is a Poisson Process.

5.2 Load Unbalancing

The second reason why TAGS performs so well has to do with "load unbalancing."
Observe that all the other task assignment policies we described specifically try
to balance load at the hosts. Random and Round-Robin balance the expected
load at the hosts, while Least-Work-Remaining goes even further in trying to
balance the instantaneous load at the hosts. In TAGS we do the opposite.

Figure 8 shows the load at Host 1 and the load at Host 2 for TAGS-opt-slowdown,
TAGS-opt-waitingtime, and TAGS-opt-f airness as a function of a. Observe
that all 3 flavors of TAGS (purposely) severely underload Host 1 when a is low

16

but for higher a actually overload Host 1 somewhat. In the middle range, or « 1,
the load is balanced in the two hosts.

We first explain why load unbalancing is desirable when optimizing overall
mean slowdown of the system. We will later explain what happens when op-
timizing fairness. To understand why it is desirable to operate at unbalanced
loads, we need to go back to the heavy-tailed property. The heavy-tailed prop-
erty says that when a distribution is very heavy-tailed (very low a), only a
miniscule fraction of all tasks - the very largest ones - are needed to make up
more than half the total load. As an example, for the case a = .2, it turns out
that less than 10-6 fraction of all tasks are needed to make up half the load. In
fact not many more tasks, still less than 10-4 fraction of all tasks, are needed
to make up .99999 fraction of the load. This suggests a load game that can
be played: We choose the cutoff point (si) such that most tasks ((1 - 10-4)
fraction) have Host 1 as their final destination, and only a very few tasks (the
largest 10-4 fraction of all tasks) have Host 2 as their final destination. Because
of the heavy-tailed property, the load at Host 2 will be extremely high (.99999)
while the load at Host 1 will be very low (.00001). Since most tasks get to run
at such reduced load, the overall mean slowdown is very low.

When the distribution is a little less heavy-tailed, e.g., a « 1, we can't play
this load unbalancing game as well. Again, we would like to severely underload
Host 1 and send .999999 fraction of the load to go to Host 2. Before we were able
to do this by making only a very small fraction of all tasks (< 10-4 fraction)
go to Host 2. However now that the distribution is not as heavy-tailed, a larger
fraction of tasks must have Host 2 as its final destination to create very high
load at Host 2. But this in turn means that tasks with destination Host 2 count
more in determining the overall mean slowdown of the system, which is bad
since tasks with destination Host 2 experience larger slowdowns. Thus we can
only afford to go so far in overloading Host 2 before it turns against us.

When get to a > 1, it turns out that it actually pays to overload Host 1
a little. This seems counter-intuitive, since Host 1 counts more in determining
the overall mean slowdown of the system because the fraction of tasks with
destination Host 1 is greater. However, the point is that now it is impossible to
create the wonderful state where almost all tasks are on Host 1 and yet Host 1 is
underloaded. The tail is just not heavy enough. No matter how we choose the
cutoff, a significant portion of the tasks will have Host 2 as their destination.
Thus Host 2 will inevitably figure into the overall mean slowdown and so we
need to keep the performance on Host 2 in check. To do this, it turns out we
need to slightly underload Host 2, to make up for the fact that the task size
variability is so much greater on Host 2 than on Host 1.

The above has been an explanation for why load unbalancing is important
with respect to optimizing the system mean slowdown. However it is not at all
clear why load unbalancing also optimizes fairness. Under TAGS-opt-f airness,

17

Loads at hosts under TAGS-opt-waltingtime: 2 hosts, load .5

Figure 8: Load at Host 1 as cofrfyared with Host 2 in a distributed
server with 2 hosts and system, load .5 under (a) TAGS-opt-slowdown, (b)
TAGS-opt-waitingtime, and (c) TAGS-opt-fairness. Observe that for very
low a, Host 1 is run at load close to zero, and Host 2 is run at load close to 1,
whereas for high a, Host 1 is somewhat overloaded.

(a) System load 0.3
Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, toad .3

'
—1—

- Random

... Least-Work-Left Approx. -

_
— TAGS-opt-slowdown

-

!
■

-
-o- -o- -o- -G- -©- -&

~e-e-e-«--e-.©- -o- -®ir~§rq

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
alpha

(b) System load 0.5
Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, load .5

- Random

... Least-Work-Left Approx.

— TAGS-opt-slowdown

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1
alpha

(c) System load 0.7
Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, load .7

- Random

... Least-Work-Left Approx.

— TAGS-opt-slowdown

Figure 9: Mean slowdown under TAG3>9opt-slowdown in a distributed server
with 2 hosts with system load (a) 0.3, (b) 0.5, and (c) 0.7. In each figure the
mean slowdown under TAGS-opt-slowdown is compared with the performance
of Random and Least-Work-Remaining. Observe that in all the figures TAGS
outperforms the other task assignment policies under all a. However TAGS is
most effective at lower system loads.

the mean slowdown experienced by the small tasks is equal to the mean slowdown
experienced by the big tasks. However it seems in fact that we're treating the
big tasks unfairly on 3 counts:

1. The small tasks run on Host 1 which has very low load (for low a).

2. The small tasks run on Host 1 which has very low E {X2}.

3. The small tasks don't have to be restarted from scratch and wait on a
second line.

So how can it possibly be fair to help the small tasks so much? The answer
is simply that the small tasks are small. Thus they need low waiting times to
keep their slowdown low. Big tasks on the other hand can afford a lot more
waiting time. They are better able to amortize the punishment over their long
lifetimes. It is important to mention, though, that this would not be the case
for all distributions. It is because our task size distribution for low a is so
heavy-tailed that the big tasks are truly elephants (way bigger than the smalls)
and thus can afford to suffer more.5

5.3 Different Loads

Until now we have studied only the model of a distributed server with two hosts
and system load .5. In this section we consider the effect of system load on the
performance of TAGS. We continue to assume a 2 host model. Figure 9 shows the
performance of TAGS-opt-slowdown on a distributed server with 2 hosts run at
system load (a) 0.3, (b) 0.5, and (c) 0.7. In all three figures TAGS-opt-slowdown
improves upon the performance of Least-Work-Remaining and Random under
the full range of a, however the improvement of TAGS-opt-slowdown is much
better when the system is more lightly loaded. In fact, all the task assign-
ment policies improve as the system load is dropped, however the improve-
ment in TAGS is the most dramatic. In the case where the system load is 0.3,
TAGS-opt-slowdown improves upon Least-Work-Remaining by over 4 orders of
magnitude at a = 1, by 6 or 7 orders of magnitude when a = .6 and by almost
20 orders of magnitude when a = .2! When the system load is 0.7 on the other

5 It may interest the reader to understand the degree of unfairness exhibited by
TAGS-opt-slowdown and TAGS-opt-waitingtime. For TAGS-opt-slowdown, our analysis shows
that the expected slowdown of the big tasks always exceeds that of the small tasks and
the ratio increases exponentially as a drops, so that at a — 2, E {Slowdown(bigs)} «
2-E{Slowdown(smalls)}, and at a = .2, E{Slowdown(bigs)} « 104-E {Slowdown(smalls)}.
In contrast, for TAGS-opt-waitingtime, the expected slowdown of the big tasks is approxi-
mately equal to that of the small tasks until a drops below 1, at which point the expected
slowdown of the big tasks drops way below that of the small tasks, the ratio of bigs to smalls
decreasing superexponentially as a drops.

20

■J

hand, TAGS-opt-slowdown behaves comparably to Least-Work-Remaining for
most a and only improves upon Least-Work-Remaining in the narrower range
of .6 < a < 1.5. Notice however that at a «■ 1, the improvement of TAGS-opt-slowdown
is still about 4 orders of magnitude.

Why is the performance of TAGS so correlated with load? There are 2 reasons,
both of which can be understood by looking at Figure 10 which shows the loads
at the 2 hosts under TAGS-opt-slowdown in the case where the system load is
(a) 0.3, (b) 0.5, and (c) 0.7.

The first reason for the ineffectiveness of TAGS under high loads is that the
higher the load, the less able TAGS is to play the load-unbalancing game described
in Section 5.2. For lower a, TAGS reaps much of its benefit at the lower a by
moving all the load onto Host 2. When the system load is only 0.5, TAGS is easily
able to pile all the load on Host 2 without exceeding load 1 at Host 2. However
when the system load is 0.7, the restriction that the load at Host 2 must not
exceed 1 becomes a bottleneck for TAGS since it means that Host 1 can not be
as underloaded as TAGS would like. This is seen by comparing Figure 10(b) and
Figure 10(c) where in (c) the load on Host 1 is much higher for the lower a than
it is in (b).

The second reason for the ineffectiveness of TAGS under high loads has to
do with what we call excess. Excess is the extra work created in TAGS by tasks
being killed and restarted. In the 2-host case, the excess is simply equal to
A -p2 • si, where A is the outside arrival rate, p2 is the fraction of tasks whose
final destination is Host 2, and si is the cutoff differentiating small tasks from
big tasks. An equivalent definition of excess is the difference between the actual
sum of the loads on the hosts and h times the system load, where h is the
number of hosts. Notice that the dotted line in Figure 10(a)(b)(c) shows the
sum of the loads on the hosts.

Until now we've only considered the distributed servers with 2 hosts and
system load 0.5. For this scenario, excess has not been a problem. The reason
is that for low a, where we need to do the severe load unbalancing, excess is
basically non-existent for loads 0.5 and under, since p2 is so small (due to the
heavy-tailed property) and since «i could be forced down. For high a, excess
is present. However all the task assignment policies already do well in the high
a region because of the low task size variability, so the excess is not much of a
handicap.

When we look at the case of system load 0.7, however, excess is much more
of a problem, as is evidenced by the dotted line in Figure 10(c). One reason
that the excess is worse is simply that overall excess increases with load because
excess is proportional to A which is in turn proportional to load. The other
reason that the excess is worse at higher loads has to do with Si. In the low a
range, although pi is still low (due to the heavy-tailed property), s\ cannot be

21

forced low because the load at Host 2 is capped at 1. Thus the excess for low
a is very high. To make matters worse, some of this excess must be heaped on
Host 1. In the high a range, excess again is high because p2 is high.

Fortunately, observe that for higher loads excess is at its lowest point at
a K, 1. In fact, it is barely existent in this region. Observe also that the
a p» 1 region is the region where balancing load is the optimal thing to do (with
respect to minimizing mean slowdown), regardless of the system load. This
"sweet spot" is fortunate because a « 1 is characteristic of many empirically
measured computer workloads, see Section 3.

6 Analytic Results for Case of Multiple Hosts

Until now we have only considered distributed servers with 2 hosts. For the case
of 2 hosts, we saw that the performance of TAGS-opt-slowdown was amazingly
good if the system load was 0.5 or less, but not nearly as good for system load
> 0.5. In this section we consider the case of more than 2 hosts.

The phrase "adding more hosts" can be ambiguous because it is not clear
whether the arrival rate is increased as well. For example, given a system with
2 hosts and system load 0.7, we could increase the number of hosts to 4 hosts
without changing the arrival rate, and the system load would drop to 0.35. On
the other hand, we could increase the number of hosts to 4 hosts and increase
the arrival rate appropriately (double it) so as to maintain a system load of 0.7.
In our discussions below we will attempt to be clear as to which view we have
in mind.

One claim that can be made straight off is that an h host system (h > 2)
with system load p can always be configured to produce performance which is
at least as good as that of a 2 host system with system load p. To see why,
observe that we can use the h host system (assuming h is even) to simulate a 2
host system as illustrated in Figure 11: Rename Hosts 1 and 2 as Subsystem 1.
Rename Hosts 3 and 4 as Subsystem 2. Rename Hosts 5 and 6 as Subsystem 3,
etc. Now split the traffic entering the h host system so that 2/hth of the tasks
go to each of the h/2 Subsystems. Now apply your favorite task assignment
policy to each Subsystem independently - in our case we choose TAGS. Each
Subsystem will behave like a 2 host system with load p running TAGS. Since
each Subsystem will have identical performance, the performance of the whole
h host system will be equal to the performance of any one subsystem. (Observe
that the above cute argument works for any task assignment policy).

Figure 12 shows the mean slowdown under TAGS-opt-slowdown for the case
of a 4 host distributed server with system load 0.3. Comparing these results to
those for the 2 host system with system load 0.3 (Figure 9(a)), we see that:

22

J

(a) System load 0.3

0.7
Loads at hosts under TAGS-opt slowdown 2 hosts, load .3 1 1 '

0.6 _.__■_ —.-:..... L

"- - Load host 1

\ \ 0.5 —- .
\ — Load host 2

\
0.4 \ /

0.3 I \ / \
\

-

0.2 v
v v-- _- ^--

0.1

0.2 0.4 0.6 0.8

(b) System load 0.5
Loads at hosts under TAGS-opt-slowdown: 2 hosts, load .5

1 1 1

- Load host 1
-v

\ — Load host 2

- \ \ ̂
\

- \
\/ "

-
\ \

- „„-''

0.2 0.4 0.6 1 1.2 1.4 1.6
alpha

(c) System load 0.7

2
Loads at hosts under TAGS-opt-slowdown: 2 hosts, load .7

'
1.8 .;.■•■••■'-

1.6
...Sum

- Load host 1

-

1.4
— Load host 2

1.2

\ J^~— \ /^
0.8 ""^"-»^ x / "

0.6

Figure 10: Load at Host 1 and Host Sunder TAGS-opt-slowdown shown for
a distributed server with 2 hosts and system load (a) 0.3 (b) 0.5 (c) 0.7. The
dotted line shows the sum of the loads at the 2 hosts. If there were no excess,
the dotted line would be at (a) 0.6 (b) 1.0 and (c) 1.4 in each of the graphs
respectively. In figures (a) and (b) we see excess only at the higher a range.
In figure (c) we see excess in both the low a and high a range, but not around
a « 1.

•J

OUTSIDE
ARRIVALS =>

DISPATCHER

RANDOM
SPLITTING

—"II l©-r TAGS
SUBSYSTEM

L~
TAGS

SUBSYSTEM

— II \^h"
 I s

TAGS
. , SUBSYSTEM
I . i i i >Q> 3

£7- TQ)-~

TAGS
SUBSYSTEM

4

Figure 11: Illustration of the claim that an h host system (h > 2) with system,
load p can always be configured to produce performance at least as good as a 2
host system with system load p (although the h host system has much higher
arrival rate).

24

Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 4 hosts, load .3

- Random

... Least-Work-Left Approx.

— TAGS-opt-slowdown

■©-€-■©- -o—o-
_0- -O- -O- -G- -&■ -

1 1.2
alpha

Figure 12: Mean slowdown under TAGS-opt-slowdown compared with other task
assignment policies in the case of a distributed server with 4 hosts and system
load 0.3. The cutoffs for TAGS-opt-slowdown were optimized by hand. In many
cases it is possible to improve upon the results shown here by adjusting the cutoffs
further, so the slight bend in the graph may not be meaningful. Observe that the
mean slowdown o/TAGS almost never exceeds 1.

1. The performance of Random stayed the same, as it should.

2. The performance of Least-Work-Remaining improved by a couple orders
of magnitude in the higher a region, but less in the lower a region. The
Least-Work-Remaining task assignment policy is helped by increasing
the number of hosts, although the system load stayed the same, because
having more hosts increases the chances of one of them being free.

3. The performance of TAGS-opt-slowdown improved a lot. So much so,
that the mean slowdown under TAGS-opt-slowdown is never over 6 and
almost always under 1. At o « 1, TAGS-opt-slowdown improves upon
Least-Work-Remaining by 4-5 orders of magnitude. At a = .6, TAGS-opt-slowdown
improves upon Least-Work-Remaining by 8-9 orders of magnitude. At
a = .2, TAGS-opt-slowdown improves upon Least-Work-Remaining by
over 25 orders of magnitude!

The enhanced performance of TAGS on more hosts may come from the fact
that more hosts allow for greater flexibility in choosing the cutoffs. However

25

it is hard to say for sure because it is difficult to compute results for the case
of more than 2 hosts. The cutoffs in the case of 2 hosts were all optimized
by Mathematica, while in the case of 4 hosts it was necessary to perform the
optimizations by hand (and for all we know, it may be possible to do even
better). For the case of system load 0.7 with 4 hosts we ran into the same type
of problems as we did for the 2 host case with system load 0.7.

6.1 The Server Expansion Performance Metric

There is one thing that seems very artificial about our current comparison of
task assignment policies. No one would ever be willing to run a system whose
expected mean slowdown was 1010. In practice, if a system was operating with
mean slowdown of 1010,' the number of hosts would be increased, without in-
creasing the arrival rate, (thus dropping the system load) until the system's per-
formance improved to a reasonable mean slowdown, like 3 or less. Consider the
following example: Suppose we have a 2-host system running at system load .7
and with variability parameter a = .6. For this system the mean slowdown un-
der TAGS-opt-slowdown is on the order of 109, and no other task assignment pol-
icy that we know of does better. Suppose however we desire a system with mean
slowdown of 3 or less. So we double the number of hosts (without increasing the
outside arrival rate). At 4 hosts, with system load 0.35, TAGS-opt-slowdown
now has mean slowdown of around 1, whereas Least-Work-Remaining's slow-
down has improved to around 108. It turns out we would have to increase
number of hosts to 13 for the performance of Least-Work-Remaining to im-
prove to the point of mean slowdown of under 3. And for Random to reach that
level it would require an additional 109 hosts!

The above example suggests a new practical performance metric for dis-
tributed servers, which we call the server expansion metric. The server ex-
pansion metric asks how many additional hosts must be added to the existing
server (without increasing outside arrival rate) to bring mean slowdown down
to a reasonable level (where we'll arbitrarily define "reasonable" as 3 or less).
Figure 13 compares the performance of our task assignment policies according
to the server expansion metric, given that we start with a 2 host system with
system load of 0.7. For TAGS-opt-slowdown, the server expansion is only 3 for
a = .2 and no more than 2 for all the other a. For Least-Work-Remaining, on
the other hand, the number of hosts we need to add ranges from 1 to 27, as a
decreases. Still Least-Work-Remaining is not so bad because at least its per-
formance improves somewhat quickly as hosts are added and load is decreased,
the reason being that both these effects increase the probability of a task find-
ing an idle host. By contrast Random, shown in Figure 13(b), is exponentially
worse than the others, requiring as many as 105 additional hosts when a « 1.
Although Random does benefit from increasing the number of hosts, the effect

26

(a) Non-log scale
Server expansion requirement

30

25

20

10

..o.. Least-Work-Remaining

—o— TAGS-opt-slowdown

O.

O..
•0---0.

■O.

O ■ • • G.

<t>- '0-.
^e-e--e--o- -e—o—o—o—o—o—e- -e--e--e-'e-e-€>--$

'o ■•(p
 I I I I I ! _i : 1

0.2 0.4 0.6 0.8 1 1.2
alpha

1.4 1.1 1.1

(b) Log scale
Server expansion requirement

10"

•o- Random

,o.. Least-Work-Remaining

-o— TAGS-opt-slowdown

no|:°:t-gig-g-.f-^-^-^-^^^-^-^^>-.-.^..
0.2 0.6 0.8 1 1.2

alpha

Figure 13: Server expansion requirement for each of the task assignment policies,
given that we start with a 2 host systernnwith system load of 0.7. (a) Shows just
Least-Work-Remaining and TAGS-opt-slowdown on a non-log scale (b) Shows
Least-Work-Remaining, TAGS-opt-slowdown, and Random on a log scale.

Second Moment of Bounded Pareto Distribution B(k,p,alpha) where p = 107

alpha

Figure 14: Second moment of B(k,p,a) distribution, where now the upper
bound, p, is set at p = 107, rather than 10*0. The mean is held fixed at 3000 as
a is varied. Observe that the coefficient of variation now ranges from 2, when
a = 2 to 33, when a = .2.

isn't nearly as strong as it is for TAGS and Least-Work-Remaining.

7 The effect of the range of task sizes

The purpose of this section is to investigate what happens when the range of
task sizes (difference between the biggest and smallest possible task sizes) is
smaller than we have heretofore assumed, resulting in a smaller coefficient of
variation in the task size distribution.

Until now we have always assumed that the task sizes are distributed ac-
cording to a Bounded Pareto distribution with upper bound p = 1010 and fixed
mean 3000. This means, for example, that when a « 1 (as agrees with empirical
data), we need to set the lower bound on task sizes to k = 167. However this
implies that the range of task sizes spans 8 orders of magnitude!

It is not clear that most applications have task sizes ranging 8 orders in mag-
nitude. In this section we rederive the performance of all the task assignment
policies when the upper bound p is set to p = 107, while still holding the mean
of the task size distribution at 3000. This means, for example, that when a « 1

J

28

Results: MEAN SLOWDOWN using TAGS-opt-slowdown: 2 hosts, load .5,p =1(3

0.2 0.4 O.i
alpha

Figure 15: Mean slowdown under TAGS-opt-slowdown in a distributed server
with 2 hosts with system load 0.5, as compared with the performance of Random
and Least-Work-Remaining. In this set of results the task size distribution is
B(k, p, a), where p= 107.

(as agrees with empirical data), we need to set the lower bound on task sizes to
It = 287, which implies the range of task sizes spans just 5 orders of magnitude.

Figure 14 shows the second moment of the Bounded Pareto task size distri-
bution as a function of a when p - 107. Comparing this figure to Figure 4, we
see that the task size variability is far lower when p = 107 and therfore so is the
coefficient of variation.

Lower variance in the task size distribution suggests that the improvement
of TAGS over the other task assignment policies will not be as dramatic as in
the higher variability setting (when p — 1010). This is in fact the case. What is
interesting, however, is that even in this lower variability setting the improve-
ment of TAGS over the other task assignment policies is still impressive, as shown
in Figure 15. Figure 15 shows the mean slowdown of TAGS-opt-slowdown as
compared with Random and Least-Work-Left for the case of two hosts with
system load 0.5. Observe that for awl, TAGS improves upon the other task
assignment policies by over 2 orders of magnitude. As a drops, the improvement
increases. This figure should be contrasted with Figure 9(b), which shows the
same scenario where p = 1010.

29

8 Conclusion and Future Work

This paper is interesting not only because it proposes a powerful new task
assignment policy, but more so because it challenges some natural intuitions
which we have come to adopt over time as common knowledge.

Traditionally, the area of task assignment, load balancing and load sharing
has consisted of heuristics which seek to balance the load among the multiple
hosts. TAGS, on the other hand, specifically seeks to unbalance the load, and
sometimes severely unbalance the load. Traditionally, the idea of killing a task
and restarting from scratch on a different machine is viewed with skepticism,
but possibly tolerable if the new host is idle. TAGS, on the other hand, kills tasks
and then restarts them at a target host which is typically operating at extremely
high load, much higher load than the original source host. Furthermore, TAGS
proposes restarting the same task multiple times.

It is interesting to consider further implications of these results, outside the
scope of task assignment. Consider for example the question of scheduling CPU-
bound tasks on a single CPU, where tasks are not preemptible and no a priori
knowledge is given about the tasks. At first it seems that FCFS scheduling is
the only option. However in the fact of high task size variability, FCFS may
not be wise. This paper suggests that killing and restarting tasks may be worth
investigating as an alternative, if the load on the CPU is low enough to tolerate
the extra work created.

Task assignment also has applications outside of the context of a distributed
server system described in this paper. A very interesting recent paper by Shaikh,
Rexford, and Shin [15] discusses routing of IP flows (which also have heavy-
tailed size distributions) and recommends routing long flows differently from
short flows.

References

[1] Azer Bestavros. Load profiling: A methodology for scheduling real-time
tasks in a distributed system. In Proceedings of ICDCS '97, May 1997.

[2] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web
traffic: Evidence and possible causes. IEEE/ACM Transactions on Net-
working, 5(6):835-846, December 1997.

[3] Mark E. Crovella, Mor Harchol-Balter, and Cristina Murta. Task assign-
ment in a distributed system: Improving performance by unbalancing load.
In Proceeding of ACM Sigmetrics Conference on Measurement and Model-
ing of Computer Systems Poster Session, 1998.

30

[4] Mark E. Crovella, Murad S. Taqqu, and Azer Bestavros. Heavy-tailed
probability distributions in the world wide web. In A Practical Guide To
Heavy Tails, chapter 1, pages 1-23. Chapman & Hall, New York, 1998.

[5] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing
problem. IEEE Transactions on Automatic Control, AC-25(4):690-693,
1980.

[6] Mor Harchol-Balter, Mark Crovella, and Cristina Murta. Task assignment
in a distributed server. To appear in IEEE Journal of Parallel and Dis-
tributed Computing, scheduled for late 1999.

[7] Mor Harchol-Balter, Mark Crovella, and Cristina. Murta. Task assignment
in a distributed server. In 10th International Conference on Modeling Tech-
niques and Tools for Computer Performance Evaluation, Lecture Notes in
Computer Science, No. 1469., pages 13-24, September 1998.

[8] Mor Harchol-Balter and Allen Downey. Exploiting process lifetime dis-
tributions for dynamic load balancing. A CM Transactions on Computer
Systems, 15(3), 1997.

[9] Gordon Irlam. Unix file size survey - 1993. Available at http:-
//www.base.com/gordoni/ufs93.html, September 1994.

[10] W. E. Leland and T. J. Ott. Load-balancing heuristics and process be-
havior. In Proceedings of Performance and ACM Sigmetrics, pages 54-69,
1986.

[11] Randolph D. Nelson and Thomas K. Philips. An approximation to the
response time for shortest queue routing. Performance Evaluation Review,
7(1):181-189, 1989.

[12] Randolph D. Nelson and Thomas K. Philips. An approximation for the
mean response time for shortest queue routing with general interarrival
and service times. Performance Evaluation, 17:123-139, 1993.

[13] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of Poisson
modeling. IEEE/ACM Transactions on Networking, pages 226-244, June
1995.

[14] David L. Peterson and David B. Adams. Fractal patterns in DASD I/O
traffic. In CMG Proceedings, December 1996.

[15] Anees Shaikh, Jennifer Rexford, and Kang G. Shin. Load-sensitive routing
of long-lived ip flows. In Proceedings of SIGC0MM, September 1999.

[16] S. Sozaki and R. Ross. Approximations in finite capacity multiserver queues
with poisson arrivals. Journal of Applied Probability, 13:826-834, 1978.

31

[17] R. W. Weber. On the optimal assignment of customers to parallel servers.
Journal of Applied Probability, 15:406-413, 1978.

[18] Ward Whitt. Deciding which queue to join: Some counterexamples. Oper-
ations Research, 34(l):226-244, January 1986.

[19] W. Winston. Optimality of the shortest line discipline. Journal of Applied
Probability, 14:181-189, 1977.

[20] Ronald W. Wolff. An upper bound for multi-channel queues. Journal of
Applied Probability, 14:884-888, 1977.

[21] Ronald W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice
Hall, 1989.

32

9 Appendix

This section contains the formulas we used in evaluating the TAGS task assign-
ment policy. We will use the notation defined in Table 1.

The following observation will be helpful in understanding the first batch of
formulas below: Observe that the original tasks, all of which enter Host 1, are
have sizes i.i.d. from B(k,p, a). However, once a task is moved to Host 2, we
know that its size exceeds sx. Conditional on this knowledge, we can assume
that the tasks entering Host 2 have sizes i.i.d. from B(si,p,a). Likewise the
tasks entering Host j have sizes i.i.d. from B(sj_i,p, a). Observe also that the
tasks whose final destination is Host j have sizes i.i.d. from B{sj-\,j, a).

The formulas below assume knowledge of the cutoff points so, «i,..., «A .
These are determined using mathematica to optimize either mean slowdown,
mean waiting time or fairness, as desired.

E{XJ'}

xka
-a-l

1 - (k/p)a

f Jk

E{X}

f(x) ■ x3dx = <

■ h ■ p

k < x < p

(a-j)(.l-0</p)Q) r J

iri7FJ • (lnp - Ink) if a = j = 1

= {/"^'NW'«-^
hostpi = y]pi

3-1

E H) - £ •<m.A—
Pi

E{hostX{} =

E{hostX?} =

hostXi =

«»r.., ocr-r") : if a ^ j (a-jjjl-tsi-x/si)«)

jMr(lnsi-lnsi_1)ifa = i=l

Pi E{Xi}+h^pr-pisi

■ (Ins; — lnsi_i) if a = j = 2

host p. host pi

Pi ^ fv2T , hostpj-pi 2
I—T~ ■ & \xi / H r—: si hostpi hostpi

A • hostpi

33

J

B(k,p,a)

/(*)
a

«o,«i, ■»«A

Si

Number of hosts
Task size distribution
Upper bound on task size distribution
Lower bound on task size distribution
Probability mass function for B(k,p, a)
Heavy-tailed parameter
Task size cutoffs
Upper bound on task size seen by Host i

hostpi

host pi
hostXi

E{Xt}
EjhostXj} w
E hostXf \
Eft/*.'}
E{hostWj}
V{Wj}
E{5,}
E{W}
E{g}

Outside arrival rate into system
System load
Load at Host i
Fraction of tasks whose final destination is Host i,
i.e., whose size is between «,-_! and s,-.
Fraction of tasks which spend time at Host
Arrival rate into Host
Mean task size under B(k,p,a) distribution
jth moment of task size distribution B(k,p, a)
Expected size of tasks whose final destination is Host i.
Expected size of tasks which spend time at Host i
Second moment of size of tasks whose final destination is Host i.
Second moment of size of tasks which spend time at Host i
Expected 1/size of tasks whose final destination is Host i
Expected waiting time at Host
Total expected waiting time for tasks with final destination Host
Expected slowdown for tasks with final destination Host, i
Expected waiting time for tasks under TAGS
Expected slowdown for tasks under TAGS

Excess Total excess work being done

Table 1: Notation for analysis o/TAGS

34

hostpi = hostXi ■ E{hostX,}

E{I/A7} = E {irr''}

There are two equivalent ways of defining excess. We show both below and
check them against each other in our computations.

true-sum-of-loads = }. hostpi
■ ■ »=i

desired-sum-of-loads — h ■ p

Excess a = true-sum-of-loads — desired-sum-of-loads
h

Excess/, = / _, hostXj ■ g,_i
.»=2

Excess = Excessa = Excessb

Computing mean waiting time and mean slowdown follows from Theorem 1,
except for one fudge, as explained earlier in the text: we will assume that the
arrival process into each host is a Poisson Process. Observe that in computing
mean slowdown, we have to be careful about which jobs we're averaging over.
The calculation works out most easily if we condition on the final destination
of the job, as shown below.

E {hostWi} = hostXi ■ E {hostX?} /(2(1 - hostpi))
i

E{Wi} = 5^E{Ä<MrfW,-}"

'J=1

h

E{W} = ^E{W,}-Pi
»=i

E{Si} = E{Wi}-E{l/Xi}
h

E{S] = J2E^}-Pi

35

